	LIGHTNING SESSION L1: Reputation & Influence - Community Structure						
Number			Order				
123	Samuel Fraiberger, Roberta Sinatra, Christoph Riedl and Laszlo Barabasi Quantify	ring Reputation and Success in Art	1				
177	Yuichi Kichikawa, Hiroshi Iyetomi, Takashi Iino and Hiroyasu Inoue Hierarch	nical and Circulating Flow Structure in an Interfirm Transaction Network	2				
227	Soumaya Yahiaoui, Christophe Courtin, Pierre Maret and Laurent Tabourot Compete	ences Network Based on Interaction Data for Recommendation and Evaluation Aims	3				
134	Michael Kitromilidis and Tim S. Evans Commun	nity Detection with Metadata in a Network of Artistic Influence	4				
216	Raphaël Ceré and Mattia Egloff Soft text	tual cartography based on topic modeling and clustering of irregular, multivariate marked networks	5				
27	Abhijit Chakraborty Commur	nity characterization in a large-scale Japanese production network	6				
229	Alessandro Muscoloni and Carlo Vittorio Cannistraci A latent	geometry rationale for engineering graph-dissimilarities enhances affinity propagation community de	7				
318	Kumaran Gunasekaran, Jeyavaishnavi Muralikumar, Sudarshan Srinivasa Ramanujam, Balasubramaniam Srinivasan and Fri NetGloV	Ve: Learning Node Representations for Community Detection	8				
97	Clara Pizzuti and Annalisa Socievole Motif-ba:	ased Community Detection in Multiplex Networks	9				
112		e Spreading Model Used to Community Detection in Social Networks	10				

	LIGHTNING SESSION L2: Diffusion & Epidemics - Network Measures							
Number			Order					
74	Hale Cetinay, Piet Van Mieghem and Karel Devriendt	Best spreader node in a network	1					
225	Oliver Williams, Fabrizio Lillo and Vito Latora	Infection Spreading in Temporal Networks With Memory	2					
19	Bo Qu, Cong Li, Piet Van Mieghem and Huijuan Wang	Ranking of Nodal Infection Probability in Susceptible-Infected-Susceptible Epidemic	3					
319	Alexey Medvedev and Gabor Pete	Speeding up non-Markovian SI spreading with a few extra edges	4					
60	Timoteo Carletti, Malbor Asllani, Francesca Di Patti, Duccio Fanelli and Francesco Piazza	Crawling in crowed conditions. Application to network reconstruction	5					
10	Mica Rubinson, Nava Levit-Binnun, Avi Peled, Jodie Naim-Feil, Freche Dominnik and Elisha Moses	A novel hierarchy measurement for modeling network dynamics under directed attacks	6					
296	Jeremy Guillon, Yohan Attal, Oliver Colliot, Valentina La Corte, Bruno Dubois, Denis Schwartz, Mario Chavez and Fabrizio I	Loss of inter-frequency brain hubs in Alzheimer's disease	7					
114	Xiangrong Wang, Johan L. A. Dubbeldam and Piet Van Mieghem	Kemeny's constant and the effective graph resistance	8					
83	Taichi Haruna	Open Networks from Within: From Categorical Network Theory to New Centrality Measures of Nodes as Inp	9					
65	John Matta	A Comparison of Approaches to Computing Betweenness Centrality for Large Graphs	10					
234	Vandana Ravindran, Sunitha V and Ganesh Bagler	Investigation of control profiles in biological networks	11					

	LIGHTNING SESSION L3: Network Models - Social & Political Networks							
Numbe			Order					
295	Giona Casiraghi	Multiplex Network Regression: How Do Relations Drive Interactions?	1					
38	Yongzheng Sun and Wang Li	Coherence of multi-agent networks with reaction time delays	2					
130	Christian Hofer, Georg Jäger and Manfred Füllsack	Generating realistic road usage information and origin-destination data for traffic simulations: augmenting aç	3					
154	Sara Heydari, Sam G.B. Roberts, R.I.M Dunbar and Jari Saramäki	Multichannel Social Signatures and Persistent Features of Ego Networks	4					
21	Marija Mitrovic Dankulov and Jelena Smiljanic	Associative nature of event-driven social dynamics: a network theory approach	5					
213	Kuntal Dey, Ritvik Shrivastava, Vaibhav Mathur and Saroj Kaushik	Assessing the Effects of Social Familiarity and Stance Similarity in Interaction Dynamics	6					
138	Jacob Levy Abitbol, Márton Karsai, Jean-Pierre Chevrot, Jean-Philippe Magué and Eric Fleury	Socioeconomic and network dependencies of linguistic patterns in Twitter	7					
304	Rijul Magu and Gonzalo Mateos	United Nations General Assembly Vote Similarity Networks	8					
310	Simon Schweighofer, Giona Casiraghi and Frank Schweitzer	Predicting Offline Political Support with Online Behavioral Traces	9					
105	Nan Zhou, Xiu-Xiu Zhan, Qiang Ma, Song Lin, Jun Zhang and Zi-Ke Zhang	Identifying spreading sources and influential nodes of hot events on social networks	10					